Abstract

The lithosphere and asthenosphere make up a common geodynamic system but are characterized by different physical parameters. The former has a temperature of 1200–1300°C, a density of 3.3 g/cm3, and a viscosity of 1022 poise, while the latter has a density of 3.23 g/cm3, a viscosity in the range 1021-1018–19 poise, and a temperature from 1200–1300°C to 1600–1700°C. The asthenosphere is distinguished by a great variability of its physical state in the lateral and vertical directions. This circumstance necessitates the recognition of the different types of the asthenosphere: seismic (LVZ zone), electrical, thermal, and seismological. The structure and the physical state of the thermal asthenosphere is considered in this paper on the basis of P-T parameters. Its state normally fits viscous Newtonian liquid beneath the continents and provides partial (5–20%) melting in spreading zones and along continental margins. No partial melting is detected beneath the main portion of the continents. The interaction between the asthenosphere and lithosphere is characterized by spatiotemporal migration of partial melting zones and asthenosphere upwelling, and such interaction determines the entire range of geodynamic processes from spreading and rifting to collision and vertical motions of different senses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.