Abstract
Aberration within the p53 tumor suppressor gene is the most frequently identified genetic damage in human cancer. Regulatory functions proposed for the p53 protein include modulation of the cell cycle, cellular differentiation, signal transduction, and gene expression. Additionally, the p53 gene product may guard the genome against incorporation of damaged DNA. To facilitate study of its role in carcinogenesis using a common animal model, we determined the structure of the rat p53 gene. We identified 18 splice sites and defined 25 bases of the intervening sequences adjacent to these sites. We also discovered an allelic polymorphism that occurs within intron 5 of the gene. The rat gene approximates the mouse ortholog. It is 12 kb in length with the non-coding exon 1 separated from exon 2 by 6.2 kb of intervening sequence. The location and size of all rat gene introns approximate those of the mouse. Whereas the mouse and human genes each contain 11 exons, the rat p53 gene is composed of only 10. No intervening sequence occurs between the region of the rat gene corresponding to exons 6 and 7 of the mouse and human p53 genes. This implies intron 6 may be functionally insignificant for species in which it is retained. To extrapolate to p53 involvement in human tumorigenesis, we suggest that mutational events within intron 6 may not be of pathological significance unless splicing is hindered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.