Abstract

Propionyl-CoA carboxylase (PCC, EC 6.4.1.3) is a mitochondrial, biotin-dependent enzyme that functions in the catabolism of branched-chain amino acids, fatty acids with odd-numbered chain lengths, and other metabolites. It catalyzes the ATP-dependent carboxylation of propionyl-CoA to d-methylmalonyl-CoA. PCC is composed of two types of subunits, likely as α4β4 or α6β6, with the α subunit containing the covalently bound biotin prosthetic group. A genetic deficiency of PCC activity causes propionic acidemia, a potentially fatal disease with onset in severe cases in the newborn period. Affected patients may have mutations of either the PCCA or PCCB gene. In this study, we have determined the structure of the human PCCA gene which, at the present time, is only partially represented in the databases. Based on reported ESTs and confirmed by RT-PCR, we also redefine the translation initiation codon to a position 75 nucleotides upstream of the currently accepted initiation codon. We show the distribution of mutations, including three identified in this study, and renumber all reported mutations to count from the new initiation codon. The gene spans more than 360 kb and consists of 24 exons ranging from 37 to 335 bp in length. The introns range in size from 104·bp to 66 kb. We have also determined the nucleotide sequence of ∼1 kb of the 5′-flanking region upstream of the ATG translation initiation site. The proximal 400 bp of the 5′-flanking region shows a high G + C content (67%) and is part of a putative 1-kb CpG island that extends into exon 1 and part of intron 1. The putative promoter lacks a TATA box but contains two AP-1 sites and a conservatively defined consensus GC box, the latter characteristic of the core binding sequence of the Sp1 transcription factor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call