Abstract
Contour integration is believed to be an important step in human image processing and object recognition, and has been shown to be performed very efficiently by the visual system. However, its neuronal mechanisms are still not well understood. Most contour integration models propose lateral connections between distant orientation columns of similar orientation preference for establishing a so-called 'association field', which links colinearily aligned edge elements into a single contour. However, these models differ both in their dynamics and structure. In some models, afferent input from visual stimuli and lateral input are summed up, in other models these quantities are multiplied. In addition, one finds different assumptions on the range, geometry, and symmetry of the lateral connectivity. It is often assumed that long-range horizontal interactions in V1 serve as the neuronal substrate for the association field. Probabilistic models require unidirectional lateral interactions, linking orientation columns in only one direction, in order to get optimal contour detection performance. In contrast, experimental findings in monkeys rather suggest isotropic connections, spreading symmetrically into all directions from an orientation column. In order to analyze the range and symmetry of lateral interactions underlying contour integration in the human brain, we compared simulations of multiplicative and additive model dynamics with psychophysical contour detection data. For these investigations we used stimuli generated from association fields with different geometries. As expected, models detect contours exceedingly well when using the same association field for contour generation and contour detection. However, analyzing the correlations between human behavior and model prediction on a trial-by-trial basis showed that human behavior is reproduced best, when using the same association field for all contour geometries. Furthermore it turned out that a bidirectional association field reaching only to the nearest neighboring edge elements can not explain the correlations found among the responses of different subjects, while a single unidirectional association field can do so. However, when assuming connections up to the next to-nearest-neighbor elements, a bidirectional association field also explains the correlations between human subjects. The stimuli were designed such that the distance between two neighboring elements lies within the range of long-range connections found in V1. Hence our results allow two possible conclusions: If contour integration relies on horizontal interactions of the spatial range like in V1, a so far unknown unidirectional linking mechanism between neuronal columns is required. If such a unidirectional mechanism does not exist, our results suggest that contour integration is based on interactions on a larger spatial scale as found in higher cortical areas.
Highlights
Sixteenth Annual Computational Neuroscience Meeting: CNS*2007 William R Holmes Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here http://www.biomedcentral.com/content/pdf/1471-2202-8-S2-info.pdf
It is often assumed that long-range horizontal interactions in V1 serve as the neuronal substrate for the association field
Analyzing the correlations between human behavior and model prediction on a trial-by-trial basis showed that human behavior is reproduced best, when using the same association field for all contour geometries
Summary
Sixteenth Annual Computational Neuroscience Meeting: CNS*2007 William R Holmes Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here http://www.biomedcentral.com/content/pdf/1471-2202-8-S2-info.pdf . Structure of the neuronal interactions underlying human contour integration Email: Nadja Schinkel-Bielefeld* - nadja@neuro.uni-bremen.de * Corresponding author from Sixteenth Annual Computational Neuroscience Meeting: CNS*2007 Toronto, Canada.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.