Abstract

This research addresses a comprehensive particle-based simulation study of the structural, dynamic, and electronic properties of the liquid-vapor interface of methanol utilizing both ab initio (based on density functional theory) and empirical (fixed charge) models. Numerous properties such as interfacial width, hydrogen bond populations, dipole moments, and correlation times are characterized with identical schemes to draw useful conclusions on the strengths and weakness of the proposed models for the interface of neat methanol. Our findings indicate that all models considered in this study yield similar results for the radial distribution functions, hydrogen bond populations, and orientational relaxation times. Significant differences in the models appear when examining both the dipole moments and surface relaxation near the aqueous liquid-vapor interface. Here, the density functional theory interaction potential predicts a significant decrease in the molecular dipole moment and slight expansion in the oxygen-oxygen distance as the interface is approached. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE. For submission to Journal of Physical Chemistry B

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.