Abstract

We link the structure of nuclei around ^{100}Sn, the heaviest doubly magic nucleus with equal neutron and proton numbers (N=Z=50), to nucleon-nucleon (NN) and three-nucleon (NNN) forces constrained by data of few-nucleon systems. Our results indicate that ^{100}Sn is doubly magic, and we predict its quadrupole collectivity. We present precise computations of ^{101}Sn based on three-particle-two-hole excitations of ^{100}Sn, and we find that one interaction accurately reproduces the small splitting between the lowest J^{π}=7/2^{+} and 5/2^{+} states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.