Abstract

The structure of penetration of solar cosmic rays (SCRs) with energies of 1–100 MeV into the Earth’s magnetosphere before a strong magnetic storm of October 29–31, 2003, is studied based on the CORONAS-F satellite data. The effect of north-south asymmetry was observed in the polar caps for more than 12 h, which made it possible to study the dynamics of the boundary between the polar cap (the magnetotail) and the auroral zone (the quasi-trapping region). A previously unknown effect of dropouts in the SCR intensity latitudinal profile during the substorm active phases has been detected in the auroral magnetosphere. The mechanism by which dropouts are formed owing to the local distortion of the magnetic field line configuration, resulting in radial diffusion of particles from this region, has been proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call