Abstract

The structure of the flat interface between a two-component magnetic suspension and a conventional nonmagnetizable fluid immiscible with it is investigated with account for the dependence of the free energy of the system on the magnetization gradients, the concentration of magnetic particles, and the bearing phase density. It is shown that at certain values of the problem parameters the volume concentration of magnetic particles strongly increases near the interface, that is, the particles are substantially adsorbed at this surface. The dependence of the surface tension tensor components on the magnetic field stress is determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call