Abstract

A single-crystal structure determination of the cubic phase of CsNO3 based on data collected at 439 K up to sinθmax/λ = 0.995000 Å-1, i.e. to an unprecedentedly high-θ value, is reported. The structure has been refined in Pm3m (Z = 1). Analysis of the difference electron-density maps revealed that the most appropriate model is the twelve-orientation model with the Cs, N, O1 and O2 atoms situated on the Wyckoff positions 1a, 6f, 6f and 24l, respectively, rather than the eight-orientation aragonite model with the Cs, N and O atoms situated on the Wyckoff positions 1a, 8g and 24m, respectively. Both models, however, show close similarities if the large anisotropic displacement parameters of the O atoms in the eight-orientation aragonite model are taken into account. The reason for this is shown to lie in the smeared electron density around the positions of the disordered [NO3]- anion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.