Abstract

Gas vesicles are gas-filled proteinaceous organelles that provide buoyancy for bacteria and archaea. A gene cluster that is highly conserved in various species encodes about 8-14 proteins (Gvp proteins) that are involved in the formation of gas vesicles. Here, the first crystal structure of the gas vesicle protein GvpF from Microcystis aeruginosa PCC 7806 is reported at 2.7 Å resolution. GvpF is composed of two structurally distinct domains (the N-domain and C-domain), both of which display an α+β class overall structure. The N-domain adopts a novel fold, whereas the C-domain has a modified ferredoxin fold with an apparent variation owing to an extension region consisting of three sequential helices. The two domains pack against each other via interactions with a C-terminal tail that is conserved among cyanobacteria. Taken together, it is concluded that the overall architecture of GvpF presents a novel fold. Moreover, it is shown that GvpF is most likely to be a structural protein that is localized at the gas-facing surface of the gas vesicle by immunoblotting and immunogold labelling-based tomography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.