Abstract

Solution of the complete system of Navier-Stokes equations forms the basis for a study of the nature of flow of a viscous heat-conducting gas in the neighborhood of a trailing edge of a flat plate. The problem was solved in accordance with a difference scheme of the third order of accuracy [1]. The calculation was carried out under the same conditions as the experiment of [2], in which a plate of finite dimensions (L = 12 cm) had supersonic M = 2, Re∞, = 1000 gas flow round it. In order to obtain a thickness of the boundary layer which was acceptable for the purpose of making the measurements (of the order of 2 cm), the unperturbed gas was slightly rarefied. In the study of such problems [3–7] it is necessary to use the complete system of Navier-Stokes equations, since in the immediate neighborhood of the trailing edge one of the important assumptions in the theory of the boundary layer, ∂2u/∂y2 ≫ ∂2u/∂x2, does not hold. As a result the flow upstream near the trailing edge of the plate will depend on the flow immediately behind the edge, since the perturbations propagate both upstream and downstream in this case. The rarefaction of the gas creates additional difficulties in the formulation of the boundary conditions on the plate with flow round it when this problem is studied numerically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call