Abstract

The structure of the membrane skeleton on the cytoplasmic surface of the erythrocyte plasma membrane was observed in dried human erythrocyte ghosts by atomic force microscopy (AFM), taking advantage of its high sensitivity to small height variations in surfaces. The majority of the membrane skeleton can be imaged, even on the extracellular surface of the membrane. Various fixation and drying methods were examined for preparation of ghost membrane samples for AFM observation, and it was found that freeze-drying (freezing by rapid immersion in a cryogen) of unfixed specimens was a fast and simple way to obtain consistently good results for observation without removing the membrane or extending the membrane skeleton. Observation of the membrane skeleton at the external surface of the cell was possible mainly because the bilayer portion of the membrane sank into the cell during the drying process. The average mesh size of the spectrin network observed at the extracellular and cytoplasmic surfaces of the plasma membrane was 4800 and 3000nm2, respectively, which indicates that spectrin forms a three-dimensionally folded meshwork, and that 80% of spectrin can be observed at the extracellular surface of the plasma membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call