Abstract

A remarkable diversity of geophysical techniques is being used to probe the transition zone between the outer core and the lower mande. This inaccessible region, 2900 km below the Earth's surface, is now recognized to profoundly influence the style of mantle convection, thermal and chemical plume formation, secular variation, and possibly reversals of the magnetic field, core‐mantle exchanges of angular momentum, long‐wavelength gravitational variations, and chemical evolution of the Earth. Establishing the thermal and chemical structure of the lowermost mande and outermost core is critical to our understanding of the dynamic processes near this transition zone, and progress is now accelerating as a result of an interdisciplinary approach. Recent contributions from seismology, mineral physics, geomagnetism, and geodynamics are synthesized in this article, and a model with a combined thermal and chemical boundary layer at the core‐mantle boundary is proposed. The recent formation of the IUGG and AGU committees for SEDI (Studies of the Earth's Deep Interior) is facilitating communication in this and related interdisciplinary efforts to understand how the interior of the planet works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.