Abstract
This paper investigates the structure of the continuous liquid jet of a coaxial air-blast atomiser over a range of Weber numbers 60-1040, Reynolds numbers of liquid jet 5400-21700 and air to liquid momentum ratios of the two streams of 1.7–335. A novel optical technique, based on internal illumination of the liquid jet through the jet nozzle by a laser pulse, which excites a fluorescing dye introduced in the atomizing liquid, was used to obtain instantaneous measurements of the breakup length and the three dimensional location of the liquid core of the continuous liquid jet. The latter was achieved by simultaneously imaging the liquid jet from two directions normal to each other. Such measurements are usually prevented by droplets surrounding the liquid jet at the dense spray near the nozzle exit. The measurements showed that the break-up length of the liquid jet scaled well with the air to liquid momentum ratio. The standard deviation of the temporal fluctuations of the break-up length was around 10% of the mean breakup length for each considered flow condition. The instantaneous jet surface does not develop axi-symmetric wave structures but the time-averaged liquid jet is axi-symmetric around the nozzle axis, while the maximum deflection of the liquid jet occurs close to the breaking point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Spray and Combustion Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.