Abstract

Clathrate hydrates mostly occur in two cubic crystal structures, sI and sII. Cross-nucleation between these clathrate crystals has been observed in simulations and may be relevant to the transformation between clathrate polymorphs reported in experiments. Nevertheless, the mechanism by which clathrate crystals cross-nucleate and the structure of the interface between the distinct crystals have not yet been fully characterized. In this work, we use extensive molecular dynamics simulations to investigate the structure of the clathrate/solution interface for sI and sII guest-free and methane-filled hydrates at different degrees of supercooling and the mechanism of cross-nucleation between clathrate polymorphs. We find that 51263 water cages, which are not native to the sI or sII crystals, occur assiduously in their interfaces with the solution and play a central role in the mechanism of cross-nucleation of clathrate hydrates: cross-nucleation between sI and sII requires the formation of an interfacial layer ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.