Abstract

Using the quick-freeze, deep-etch technique, we compare the structure of the cane-shaped plus and minus sexual agglutinin molecules purified from gametes of Chlamydomonas reinhardi. We also describe the structure of three additional gamete-specific fibrillar molecules, called short canes, loops, and crescents, which are structurally related to the agglutinins. Four non-agglutinating mutant strains are found to produce the three latter fibrils but not canes, supporting our identification of the cane-shaped molecule as the agglutinin. The heads of the plus and minus canes are shown to differ in morphology. Moreover, two treatments that inactivate the plus agglutinin in vitro--thermolysin digestion and disulfide reduction/alkylation--bring about detectable structural changes only in the head domain of the cane, suggesting that the head may play an indispensible role in affecting gametic recognition/adhesion. We also present quick-freeze, deep-etch images of the flagellar surfaces of gametic, vegetative, and mutant cells of Chlamydomonas reinhardi. The gametic flagella are shown to carry the canes, short canes, loops, and crescents present in in vitro preparations. The cane and crescent proteins self-associate on the flagellar surface into stout fibers of uniform caliber, and they align along the longitudinal axis of the flagellum. The short canes and loops co-purify with flagella but, in the presence of mica, dissociate so that they lie to the sides of the flagella. The agglutinin canes of both mating types are oriented with their hooks at the membrane surface and their heads directed outward, where they are positioned to participate in the initial events of sexual agglutination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.