Abstract

The catalytic center for photosynthetic water-splitting consists of 4 Mn atoms and 1 Ca atom and is located near the lumenal surface of photosystem II. So far the structure of the Mn 4Ca-cluster has been studied by a variety of techniques including X-ray spectroscopy and diffraction, and various structural models have been proposed. However, its exact structure is still unknown due to the limited resolution of crystal structures of PSII achieved so far, as well as possible radiation damages that might have occurred. Very recently, we have succeeded in solving the structure of photosystem II at 1.9 Å, which yielded a detailed picture of the Mn 4CaO 5-cluster for the first time. In the high resolution structure, the Mn 4CaO 5-cluster is arranged in a distorted chair form, with a cubane-like structure formed by 3 Mn and 1 Ca, 4 oxygen atoms as the distorted base of the chair, and 1 Mn and 1 oxygen atom outside of the cubane as the back of the chair. In addition, four water molecules were associated with the cluster, among which, two are associated with the terminal Mn atom and two are associated with the Ca atom. Some of these water molecules may therefore serve as the substrates for water-splitting. The high resolution structure of the catalytic center provided a solid basis for elucidation of the mechanism of photosynthetic water splitting. We review here the structural features of the Mn 4CaO 5-cluster analyzed at 1.9 Å resolution, and compare them with the structures reported previously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call