Abstract

The structures of aqueous M(4+)(aq) and MF(3+)(aq), where M is uranium(IV) or thorium(IV), have been determined by L(III) edge EXAFS using data from solutions of 1.5 M HClO(4) in which the M(IV) concentrations ranged from 0.03 to 0.3 M. A least-squares refinement of the data for the aqua ions indicated 10.8 +/- 0.5 water molecules in the first hydration sphere of both ions and M-O bond distances for U(IV) and Th(IV) of 2.42 +/- 0.01 and 2.45 +/- 0.01 Å, respectively. By considering both previous structure information and the EXAFS data, we selected N = 10 +/- 1 as the most likely coordination number of both M(IV) aqua ions. EXAFS measurements from acidic aqueous uranium(IV) and thorium(IV) solutions containing fluoride show that large changes in the first coordination sphere occur. The experimental data indicates an asymmetrical distribution of the distances, probably as a result of differing M-F and M-O bond lengths. These can be described by a model that contains two different bond distances, one M-F distance at 2.10 Å and one M-O distance at 2.45 Å for U(IV); for Th(IV), the corresponding distances are 2.14 and 2.48 Å. The total coordination number in this model is unchanged from the aqua ions, i.e., 10 +/- 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call