Abstract

Based on data presented in this study, the E-W–trending Alima anticline in the Metlaoui region of the southern Tunisian Atlas Mountains formed due to far-foreland, brittle deformation. The Alima anticline is one in a series of en echelon folds in the Atlas fold-and-thrust belt of North Africa. Geologic mapping indicates that the Alima anticline has a steep southern limb, a gently dipping northern limb, and pervasive normal fault sets. Fracture orientations suggest that fracturing occurred early in the fold history as a synfolding process, not as a pre- or postdeformational process. Gravity data show positive Bouguer anomalies near fold crests, not the negative anomalies that would be expected if the anticline were salt cored. Seismic data, collected along lines in basins surrounding the Alima anticline, suggest the presence of several high-angle reverse faults. Based on surface and subsurface studies, we attribute the development of the Alima anticline to far-foreland deformation associated with late Cenozoic contraction. N-S–directed elongation in the Triassic reoriented to NW-SE–directed shortening in the Miocene, causing Triassic normal faults to be reactivated as oblique-slip reverse faults. A comparison of the Alima anticline to other anticlines in the region suggests that several different styles of folding are present, each representing a different time of initiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.