Abstract
The motion of asteroids near the 3:1 Jovian resonance in the restricted planar case is studied using three numerical methods: (a) integrating the full equations of motion, (b) integrating the averaged equations of motion, and (c) using an algebraic mapping recently developed by Wisdom (1982, Astron. J. 87, 577–593). The relative merits of each method are investigated. It is concluded that in the regular regions of the phase space, methods b and c give excellent agreement with each other and that provided the maximum eccentricity e max < 0.4 differences with the exact solution (method a) are <6% in e max and <27% in the period of the oscillations. The additions of higher order terms in the expansion of the averaged Hamiltonian provides marginally better agreement with the full integration. This is probably due to the slow convergence of the expansion of the disturbing function at large eccentricities ( e > 0.3). In chaotic regions of the phase there is little agreement between the orbital elements at any given time calculated by each method. However, all methods reflect the qualitative behavior of the chaotic trajectories and give good agreement on the bounds of the motion. Since the map is at least 200 times faster than solving the full equations of motion it is an efficient method of rapidly exploring accessible regions of the chaotic phase space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.