Abstract

This study examines the effect of aneurysmal wall elasticity on the structure of flow within an elastic aneurysm during pulsatile flow. We visualized flow structure in a model of an elastic saccular aneurysm located at the bifurcation of the anterior cerebral artery and extending to the anterior communicating artery, and measured changes in the diameter of the aneurysm wall during pulsatile flow using particle imaging velocimetry (PIV). We similarly measured these features during steady flow by PIV and found that dilation of the aneurysmal wall absorbed the dynamic energy within the aneurysm. Accordingly, aneurysm wall elasticity functions as a biocompatible reaction that relieves wall shear stress acting on the vascular wall during pulsatile flow, and should thus inhibit the development and rupture of an aneurysm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.