Abstract

AbstractSummary: Molecular dynamics simulations of a coarse‐grained bead‐spring model of flexible macromolecules tethered with one end to the surface of a cylindrical pore are presented. Chain length N and grafting density σ are varied over a wide range and the crossover from “mushroom” to “brush” behavior is studied for three pore diameters. The monomer density profile and the distribution of the free chain ends are computed and compared to the corresponding model of polymer brushes at flat substrates. It is found that there exists a regime of N and σ for large enough pore diameter where the brush height in the pore exceeds the brush height on the flat substrate, while for large enough N and σ (and small enough pore diameters) the opposite behavior occurs, i.e. the brush is compressed by confinement. These findings are used to discuss the corresponding theories on polymer brushes at concave substrates.Snapshot picture of a brush grafted inside of a cylinder, for $N=16$, $D=30, \sigma =0.08$, displaying different chains in distinct colors in order to be able to distinguish them. Top shows a side view of the cylinder, and the lower part a view of the cross‐section. Note that the particles forming the cylindrical wall are not displayed.magnified imageSnapshot picture of a brush grafted inside of a cylinder, for $N=16$, $D=30, \sigma =0.08$, displaying different chains in distinct colors in order to be able to distinguish them. Top shows a side view of the cylinder, and the lower part a view of the cross‐section. Note that the particles forming the cylindrical wall are not displayed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.