Abstract

The basic assumption of Dickerson and Kopka (J. Biomole. Str. Dyns. 2, 423, 1985) that the conformation of poly(dA).poly(dT) in solution is identical to the AT rich region of the single crystal structure of the Dickerson dodecamer is not supported by any experimental data. In poly(dA).poly(dT), NOE and Raman studies indicate that the dA and dT units are conformationally equivalent and display the (anti-S-type sugar)-conformation; incorporation of this nucleotide geometry into a double helix leads to a conventional regular B-helix in which the width of the minor groove is 8A. The derived structure is consistent with all available experimental data on poly(dA).poly(dT) obtained under solution conditions. In the crystal structure of the dodecamer, the dA and dT units have distinctly different conformations-dA residues adopt (anti, S-type sugar pucker), while dT residues belong to (low anti, N-type sugar pucker). These different conformations of the dA and dT units along with the large propeller twist can be accommodated in a double helix in which the minor groove is shrunk from 8A to less than 4A. In the conventional right handed B-form of poly(dA).poly(dT) with the 8A wide minor groove, netropsin has to bind asymmetrically along the dA strand to account for the NOE and chemical shift data and to generate a stereochemically sound structure (Sarma et al, J. Biomole. Str. Dyns. 2, 1085, 1985).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.