Abstract

TRAP (thrombospondin-related anonymous protein), localized in the micronemes and on the surface of sporozoites of the notorious malaria parasite Plasmodium, is a key molecule upon infection of mammalian host hepatocytes and invasion of mosquito salivary glands. TRAP contains two adhesive domains responsible for host cell recognition and invasion, and is known to be essential for infectivity. In the present paper, we report high-resolution crystal structures of the A domain of Plasmodium falciparum TRAP with and without bound Mg2+. The structure reveals a vWA (von Willebrand factor A)-like fold and a functional MIDAS (metal-ion-dependent adhesion site), as well as a potential heparan sulfate-binding site. Site-directed mutagenesis and cell-attachment assays were used to investigate the functional roles of the surface epitopes discovered. The reported structures are the first determined for a complete vWA domain of parasitic origin, highlighting unique features among homologous domains from other proteins characterized hitherto. Some of these are conserved among Plasmodiae exclusively, whereas others may be common to apicomplexan organisms in general.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call