Abstract

AbstractCopolymers of acrylic acid and styrene (AA/S) were prepared by pulsed plasma deposition and their structures were studied in dependence on the duty cycle (DC) for a fixed composition of 1:1. As a result, low values of DC doses preserve the structure of monomers in the plasma deposited polymers while high DC leads to a higher degree of fragmentation and a loss in regular structure. Regarding plasma copolymerisation as a feasible method to finish surfaces with a definite number of functional groups it is necessary to characterize both, the chemical nature and the physical properties of the deposited layer. Therefore, a combination of different methods was employed for the characterization of thin plasma copolymer films (FTIR, dielectric spectroscopy, differential scanning calorimetry, X‐ray photoelectron spectroscopy (XPS)). Special attention was paid on the unambiguous identification of COOH groups at the surface after derivatization with trifluoroethanol by XPS and in the volume by FTIR. The glass transition temperature of the copolymer system is lower than that for the both plasma deposited homopolymers and increases with the DC in difference to plasma deposited poly(acrylic acid). The dielectric measurements showed that the plasma deposited films were not thermally stable and underwent an undesired post‐plasma chemical reaction. The results obtained by dielectric spectroscopy are discussed in detail in comparison with the data from FTIR and XPS measurements.magnified image

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.