Abstract

Pyrrolidone carboxypeptidases (Pcps) (E.C. 3.4.19.3) can cleave the peptide bond adjacent to pyro-glutamic acid (pGlu), an N-terminal modification observed in some proteins that provides protection against common proteases. Pcp derived from extremely thermophilic Fervidobacterium islandicum AW-1 (FiPcp), that belongs to the cysteine protease family, is involved in keratin utilization under stress conditions. Although an irreversible oxidative modification of active cysteine to its sulfonic acid derivative (Cys-SO3H) renders the enzyme inactive, the molecular details for the sulfonic acid modification in inactive Pcp remain unclear. Here, we determined the crystal structure of FiPcp at 1.85 Å, revealing the oxidized form of cysteine sulfonic acid (C156–SO3H) in the catalytic triad (His-Cys-Glu), which participates in the hydrolysis of pGlu residue containing peptide bond. The three oxygen atoms of cysteine sulfonic acid were stabilized by hydrogen bonds with H180, carbonyl backbone of Q83, and water molecules, resulting in inactivation of FiPcp. Furthermore, FiPcp demonstrated a unique 139KKKK142 motif involved in inter-subunit electrostatic interactions whose mutation significantly affects the thermostability of tetrameric FiPcp. Thus, our high-resolution structure of the first inactive FiPcp with irreversible oxidative modification of active cysteine provides not only the molecular basis of the redox-dependent catalysis of Pcp, but also the structural features of its thermostability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.