Abstract
The small angle neutron scattering (SANS) technique was used to investigate the structure of nanohybrids consisting of a poly(methylmethacrylate) (PMMA) and one of two types of titanium(IV) nanoclusters. Cluster 1, [Ti6O4](OC2H5)8(CH2=CCH3COO)8, with polymerizable MMA ligands, formed covalent bonds with the polymer chains during the copolymerization, whereas cluster 2, [Ti6O4](OC2H5)8(CH3COO)8, had no polymerizable linkers and was blended into the polymeric matrix purely as a filler. In this study, SANS with contrast variation was used to investigate the size, shape and aggregation of the clusters in the hybrid materials, and their effect on the structure of the matrix. A polydispersed core-diffusion zone model was employed to explain the scattering contribution from the titanium clusters in both nanohybrid materials. No significant differences between the structures of the two nanohybrids were found. The fitted models suggest that the interface region between the cluster and matrix (the diffusion zone) is heavily occupied by the PMMA chains; however, they do not penetrate into the core region (titanium cluster).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.