Abstract

The structure of pipe networks minimizing the total energy dissipation rate is studied analytically. Among all the possible pipe networks that can be built with a given total pipe volume (or pipe lateral surface area), the network which minimizes the dissipation rate is shown to be loopless. Furthermore, such an optimal network is shown to contain at most N-2 nodes in addition to the N sources plus sinks that it connects. These results are valid whether the possible locations for the additional nodes are chosen freely or from a set of nodes (such as points of a grid). Applications of these results to various physical situations and to the efficient computation of optimal pipe networks are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.