Abstract

X-ray and neutron diffraction of excellent resolving power are used to determine the atomic structure of niobium phosphate glasses. These studies complement the results of earlier (31)P and (93)Nb nuclear magnetic resonance, Raman scattering and O1s X-ray photoelectron spectroscopy of the (Nb2O5)x-(NaPO3)(1-x) glasses (0 ≤ x ≤ 0.40). The Nb-O distances behave uniformly for glasses of 0.08 ≤ x ≤ 0.20 with distorted NbO6 octahedra that are characterized by a corner with a short Nb-O bond of 0.174 nm, four bonds of ~0.20 nm and a longer bond. The concomitant change of PO4 units from chain to end groups extends likewise to glasses of x = ~0.20, i.e. only one O atom per Nb contributes to the rupture of phosphate chains. This behaviour differs from that of related crystal structures and phosphate glasses of other oxide additions. Asymmetric Nb-O-Nb bridges that include the short Nb-O bond are formed for glasses of x ≤ 0.20 while symmetric bridges with two Nb-O bonds of ~0.190 nm appear for x > 0.2. A pre-peak at 8 nm(-1) is found in the S(Q) for glasses of 0.08 ≤ x ≤ 0.20 which is interpreted as the presence of niobate and sodium phosphate micro-domains. The weakness of this pre-peak if it is compared with that of similar GeO2-KPO3 glasses is explained with modifications of the micro-domain structure by a fraction of non-bridging O in Nb-O···Na(+) sites. The pre-peak vanishes for the glass of x = 0.40.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.