Abstract

Multifunctional hybrid materials are obtained by modifying zeolite L (ZL) with stopcock molecules, consisting of a tail group that can enter the ZL nanochannels and a head group too large to pass the channel opening. However, to date no microscopic-level structural information on modified ZL materials has been reported. Herein we draw atomistic pictures of channel openings and stopcock-functionalized ZL based on first-principles calculations. We elucidate the interactions of the tail group with the inner surface of ZL channels and the space-filling properties of the stopcocks, revealing cork- or lid-sealing modes. Water is essential to obtain stable modifications. AlOH groups are the preferred modification sites, bipodal modifications suffer from strain, and tripod binding is ruled out. Our results suggest the viability of recursive functionalization by cross-linking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.