Abstract

We report three crystal structures of the Mycobacterium tuberculosis cell division protein FtsZ, as the citrate, GDP, and GTPgammaS complexes, determined at 1.89, 2.60, and 2.08A resolution. MtbFtsZ crystallized as a tight, laterally oriented dimer distinct from the longitudinal polymer observed for alphabeta-tubulin. Mutational data on Escherichia coli FtsZ suggest that this dimer interface is important for proper protofilament and "Z-ring" assembly and function. An alpha-to-beta secondary structure conformational switch at the dimer interface is spatially analogous to, and has many of the hallmarks of, the Switch I conformational changes exhibited by G-proteins upon activation. The presence of a gamma-phosphate in the FtsZ active site modulates the conformation of the "tubulin" loop T3 (spatially analogous to the G-protein Switch II); T3 switching upon gamma-phosphate ligation is directly coupled to the alpha-to-beta switch by steric overlap. The dual conformational switches observed here for the first time in an FtsZ link GTP binding and hydrolysis to FtsZ (and tubulin) lateral assembly and Z-ring contraction, and they are suggestive of an underappreciated functional analogy between FtsZ, tubulin and G-proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.