Abstract
The structure of a mixed brush made of arm-grafted polymer stars and grafted linear chains is investigated using the Scheutjens–Fleer self-consistent field method. It is shown that the mixing of stars and chains is thermodynamically favorable with respect to their lateral segregation in the brush. On the other hand, a segregation of linear and starlike macromolecules in the direction perpendicular to the grafting surface is observed. Conformations of stars and linear chains in the brush are determined by the overall molecular weight and the longest path length of linear and starlike macromolecules. Short linear chains occupy the space adjacent to the grafting surface and push the stars toward the brush periphery. In the case of long chains the interior of the brush is filled by the stars while the chains pass through the layer of the stars and expose their ends at the brush periphery. The most interesting is the intermediate situation where the linear chains have larger longest path but lower molecular we...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.