Abstract

Surfactant protein B (SP-B) is essential for normal lung surfactant function, which is in itself essential to life. However, the molecular basis for SP-B's activity is not understood and a high-resolution structure for SP-B has not been determined. Mini-B is a 34-residue peptide with internal disulfide linkages that is composed of the N- and C-terminal helical regions of SP-B. It has been shown to retain similar activity to full-length SP-B in certain in vitro and in vivo studies. We have used solution NMR to determine the structure of Mini-B in the presence of micelles composed of the anionic detergent sodium dodecyl sulfate (SDS). Under these conditions, Mini-B forms two alpha-helices connected by an unstructured loop. Mini-B possesses a strikingly amphipathic surface with a large positively charged patch on one face of the peptide and a large hydrophobic patch on the opposite face. A tryptophan side chain extends outward from the peptide in a position to interact with lipids at the polar/apolar interface. Interhelix interactions are stabilized by both disulfide bonds and by interleaving of hydrophobic side chains from the two helices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call