Abstract

AbstractThe microporous polypropylene sheets were prepared by biaxially stretching polypropylene sheets containing CaCO3 filler (particle size, 0.08–3.0 μm), when the CaCO3 filler content was 59% by weight and the stretching ratio was 2.8 × 1.8. The microstructure of the sheets were investigated in relation to the CaCO3 particle size by a N2 gas permeation method. (1) Effective porosity increases with decreasing mean particle size of filler. (2) The tortuosity factor of the pore is in the range of 25–40 and becomes relatively smaller with decreasing mean particle size of filler. (3) The equivalent pore size becomes relatively smaller with decreasing mean particle size of filler.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call