Abstract
Cavitation erosion (CE) is the predominant cause for the failure of overflow components in fluid machinery. Advanced coatings have provided an effective solution to cavitation erosion due to the rapid development of surface engineering techniques. However, the influence of coating structures on CE resistance has not been systematically studied. To better understand their relationship, micro-nano and conventional WC-10Co4Cr cermet coatings are deposited by high velocity oxygen fuel spraying(HVOF), and their microstructures are analyzed by OM, SEM and XRD. Meanwhile, characterizations of mechanical and electrochemical properties of the coatings are carried out, as well as the coatings’ resistance to CE in 3.5 wt % NaCl solution, and the cavitation mechanisms are explored. Results show that micro-nano WC-10Co4Cr coating possesses dense microstructure, excellent mechanical and electrochemical properties, with very low porosity of 0.26 ± 0.07% and extraordinary fracture toughness of 5.58 ± 0.51 MPa·m1/2. Moreover, the CE resistance of micro-nano coating is enhanced above 50% than conventional coating at the steady CE period in 3.5 wt % NaCl solution. The superior CE resistance of micro-nano WC-10Co4Cr coating may originate from the unique micro-nano structure and properties, which can effectively obstruct the formation and propagation of CE crack. Thus, a new method is proposed to enhance the CE resistance of WC-10Co4Cr coating by manipulating the microstructure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.