Abstract

Every measurement that can be implemented by local quantum operations and classical communication (LOCC) using an infinite number of rounds is the limit of a sequence of measurements, where each measurement in the sequence requires only a finite number of rounds. This rather obvious and well-known fact is nonetheless of interest as it shows that these infinite-round measurements can be approximated arbitrarily closely simply by using more and more rounds of communication. Here we demonstrate the perhaps less obvious result that (at least) for bipartite systems, the reverse relationship also holds. Specifically, we show that every finite-round bipartite LOCC measurement is the limit of a continuous sequence of LOCC measurements, where each measurement in that sequence can be implemented by LOCC, but only with the use of an infinite number of rounds. Thus, the set of LOCC measurements that require an infinite number of rounds is dense in the entirety of LOCC, as is the set of finite-round LOCC measurements. This means there exist measurements that can only be implemented by LOCC by using an infinite number of rounds, but can nonetheless be approximated closely by using one round of communication, and actually in some cases, no communication is needed at all. These results follow from a necessary condition presented here for finite-round LOCC, which is extremely simple to check, is very easy to prove, and which can be violated by utilizing an infinite number of rounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.