Abstract
Critical thickness (hc) is calculated for capped and uncapped lattice mismatched II-VIsemiconductor epilayers. Both the old equilibrium theory and the improved theory have been used.The calculated values are compared with the experimental data on epilayers of several II-VIsemiconductors and alloys. The observed values of hc are larger than the calculated values. Howeverthe discrepancy is much smaller than that found in InGaAs/GaAs and GeSilSi layers. Moreover ascompared to InGaAs/GaA.s:a nd GeSilSi layers, the experimental data show a much smaller scatter andcan be fitted with one curve. Strain relaxation in layers with thickness h > hc is also calculated. Strainrelaxation in ZnSe layers grown on (100) GaAs shows good agreement with the equilibrium theory. Inother cases the observed relaxation is sluggish, the residual strain is larger than its calculated value.Thick highly mismatched layers behave differently. The residual strain agrees with theory anddislocations are distributed periodically, A model to interpret these observations is suggested.Implications of this study on the stability of 11V- I strained layers are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Defence Science Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.