Abstract

Aerosol-OT is a widely used anionic surfactant, and its lyotropic properties have been studied extensively. However, neat AOT is itself liquid crystalline. We carried out an X-ray study of neat AOT sodium salt, as well as of AOT-n-decyl-, n-dodecyl-, n-tetradecyl-, and n-hexadecylammonium salts. We confirm an earlier report that pure AOT forms a hexagonal columnar phase but propose a different packing model. This involves a relatively highly ordered structure with each column cross-section containing three tessellated molecules in the plane normal to the column axis. The structure is trigonal locally but hexagonal over the long-range. This mode of assembly is supported by electron density reconstruction and molecular modeling. At subambient temperatures, the AOT-alkylammonium complexes Cn-AOT, with n=10-16, also display a hexagonal columnar phase, but this is more disordered, and each column cross-section contains only two ion pairs. Unusually, molar enthalpy and entropy of the columnar-isotropic transition in Cn-AOT salts decrease with increasing n. This is attributed to a disproportionally high conformational disorder of the radial chains in the columnar phase, which is required for efficient space filling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.