Abstract

Aminoacyl-tRNA synthetases (aaRSs) are a family of enzymes responsible for the covalent link of amino acids to their cognate tRNAs. The selectivity and species-specificity in the recognitions of both amino acid and tRNA by aaRSs play a vital role in maintaining the fidelity of protein synthesis. We report here the first crystal structure of human tryptophanyl-tRNA synthetase (hTrpRS) in complex with tRNATrp and Trp which, together with biochemical data, reveals the molecular basis of a novel tRNA binding and recognition mechanism. hTrpRS recognizes the tRNA acceptor arm from the major groove; however, the 3′ end CCA of the tRNA makes a sharp turn to bind at the active site with a deformed conformation. The discriminator base A73 is specifically recognized by an α-helix of the unique N-terminal domain and the anticodon loop by an α-helix insertion of the C-terminal domain. The N-terminal domain appears to be involved in Trp activation, but not essential for tRNA binding and acylation. Structural and sequence comparisons suggest that this novel tRNA binding and recognition mechanism is very likely shared by other archaeal and eukaryotic TrpRSs, but not by bacterial TrpRSs. Our findings provide insights into the molecular basis of tRNA specificity and species-specificity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.