Abstract

G-quadruplex structures formed by DNA at the human telomeres are attractive anticancer targets. Human telomeric sequences can adopt a diverse range of intramolecular G-quadruplex conformations: a parallel-stranded conformation was observed in the crystalline state, while at least four other forms were seen in K(+) solution, raising the question of which conformation is favored in crowded cellular environment. Here, we report the first NMR structure of a human telomeric G-quadruplex in crowded solution. We show that four different G-quadruplex conformations are converted to a propeller-type parallel-stranded G-quadruplex in K(+)-containing crowded solution due to water depletion. This study also reveals the formation of a new higher-order G-quadruplex structure under molecular crowding conditions. Our molecular dynamics simulations of solvent distribution provide insights at molecular level on the formation of parallel-stranded G-quadruplex in environment depleted of water. These results regarding human telomeric DNA can be extended to oncogenic promoters and other genomic G-rich sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.