Abstract

A multi-dimensional model was used to calculate interactions between spray drops and gas motions close to the nozzle in dense high-pressure sprays. The model also accounts for the phenomena of drop breakup, drop collision and coalescence, and the effect of drops on the gas turbulence. The calculations used a new method to describe atomization (a boundary condition in current spray codes). The method assumes that atomization and drop breakup are indistinguishable processes within the dense spray near the nozzle exit. Accordingly, atomization is prescribed by injecting drops ('blobs') that have a size equal to the nozzle exit diameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.