Abstract

Bone morphogenetic protein 2 (BMP-2) is a member of the transforming growth factor-β (TGF-β) signalling family and has a very broad biological role in development. Its signalling is regulated by many effectors: transmembrane proteins, membrane-attached proteins and soluble secreted antagonists such as Gremlin-1. Very little is known about the molecular mechanism by which Gremlin-1 and other DAN (differential screening-selected gene aberrative in neuroblastoma) family proteins inhibit BMP signalling. We analysed the interaction of Gremlin-1 with BMP-2 using a range of biophysical techniques, and used mutagenesis to map the binding site on BMP-2. We have also determined the crystal structure of Gremlin-1, revealing a similar conserved dimeric structure to that seen in other DAN family inhibitors. Measurements using biolayer interferometry (BLI) indicate that Gremlin-1 and BMP-2 can form larger complexes, beyond the expected 1:1 stoichiometry of dimers, forming oligomers that assemble in alternating fashion. These results suggest that inhibition of BMP-2 by Gremlin-1 occurs by a mechanism that is distinct from other known inhibitors such as Noggin and Chordin and we propose a novel model of BMP-2-Gremlin-1 interaction yet not seen among any BMP antagonists, and cannot rule out that several different oligomeric states could be found, depending on the concentration of the two proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.