Abstract

Gramicidin A, a hydrophobic linear polypeptide, forms channels in phospholipid membranes that are specific for monovalent cations. Nuclear Magnetic Resonance (NMR) spectroscopy provided the first direct physical evidence that the channel conformation in membranes is an amino terminal-to-amino terminal helical dimer, and circular dichroism (CD) spectroscopy has shown the sensitivity of its conformation to different environments and the structural consequences of ion binding. The three-dimensional structure of a gramicidin/cesium complex has been determined by x-ray diffraction of single crystals using single wavelength anomalous scattering for phasing. The left-handed double helix in this crystal form corresponds to one of the intermediates in the process of folding and insertion into membranes. Co-crystals of gramicidin and lipid that appear to have gramicidin in their membrane channel conformation have also been formed and are presently under investigation. Hence, we have used a combination of spectroscopic and diffraction techniques to examine the conformation and functionally-related structural features of gramicidin A.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.