Abstract

Golgi apparatus (GA) of eukaryotic cells consist of one or more stacks of flattened saccules (cisternae) and an array of fenestrae and tubules continuous with the peripheral edges of the saccules. Golgi apparatus also are characterized by zones of exclusion that surround each stack and by an assortment of vesicles (or vesicle buds) associated with both the stacks and the peripheral tubules of the stack cisternae. Each stack (sometimes referred to as Golgi apparatus, Golgi complex, or dictyosome) is structurally and functionally polarized, reflecting its role as an intermediate between the endoplasmic reticulum, the cell surface, and the lysosomal system of the cell. There is probably only one GA per cell, and all stacks of the GA appear to function synchronously. All Golgi apparatus are involved in the generation and movement of product and membrane within the cell or to the cell exterior, and these functions are often reflected as structural changes across the stacks. For example, in plants, both product and membrane appear to maturate from the cis to the trans poles of the stacks in a sequential, or serial, manner. However, there is also strong ultrastructural evidence in plants for a parallel input to the stack saccules, probably through the peripheral tubules. The same modes of functioning probably also occur in animal GA; although here, the parallel mode of functioning almost surely predominates. In some cells at least, GA stacks give rise to tubular-vesicular structures that resemble the trans Golgi network. Rudimentary GA, consisting of tubular-vesicular networks, have been identified in fungi and may represent an early stage of GA evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call