Abstract

Fusarium oxysporum is a highly destructive plant pathogen and an emerging pathogen of humans. Like other ascomycete fungi, F. oxysporum secretes α-pheromone, a small peptide that functions both as a chemoattractant and as a quorum-sensing signal. Three of the ten amino acid residues of α-pheromone are tryptophan, an amino acid whose sidechain has high affinity for lipid bilayers, suggesting a possible interaction with biological membranes. Here we tested the effect of different lipid environments on α-pheromone structure and function. Using spectroscopic and calorimetric approaches, we show that this peptide interacts with negatively charged model phospholipid vesicles. Fluorescence emission spectroscopy and nuclear magnetic resonance (NMR) measurements revealed a key role of the positively charged groups and Trp residues. Furthermore, NMR-based calculation of the 3D structure in the presence of micelles, formed by lipid surfactants, suggests that α-pheromone can establish an intramolecular disulfide bond between the two cysteine residues during interaction with membranes, but not in the absence of lipid mimetics. Remarkably, this oxidized version of α-pheromone lacks biological activity as a chemoattractant and quorum-sensing molecule. These results suggest the presence of a previously unidentified redox regulated control of α-pheromone activity at the surface of the plasma membrane that could influence the interaction with its cognate G-protein coupled receptor.

Highlights

  • The ascomycete fungus Fusarium oxysporum is a highly destructive plant pathogen and an emerging pathogen of humans

  • Whereas Scr displayed a significant quantum yield increment, attributable to hydrophobic indole shielding provided by the lipidic moiety (Figures 1D,F), in the wild-type α-pheromone (WT) peptide the blue shift was accompanied by a decrease of Trp fluorescence emission (Figures 1C,E). These findings suggest the establishment of local quenching interactions involving the Trp sidechains in the WT version of α-pheromone

  • Our discovery of an oxidized version of α-pheromone immediately suggested a mechanism of redoxmediated control of its biological function

Read more

Summary

Introduction

The ascomycete fungus Fusarium oxysporum is a highly destructive plant pathogen and an emerging pathogen of humans. Nuclear magnetic resonance (NMR) determination of the high-resolution structure of F. oxysporum α-pheromone in H2O and trifluorethanol (TFE) revealed the presence of a key central β-turn resembling that of its yeast counterpart. Disruption of this fold by D-alanine substitution of the conserved central Gly6-Gln residues or by random sequence scrambling demonstrated a crucial role for this structural determinant in triggering receptor-dependent responses (Vitale et al, 2017). Our results provide new insights into the membrane interaction and redox-driven regulation of α-pheromone, as well as on its effect on biological activity in F. oxysporum, including both Ste2-dependent and independent processes

Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call