Abstract
AbstractEffects of hydrogen sulfide on the structure of carbon nanotubes (CNTs) were studied using high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS). The CNTs were synthesized with an iron thin-film catalyst by microwave plasma-assisted CVD on the diamond substrate. The HRTEM images revealed that essentially all of the CNTs obtained in this study were multiwall (MWCNT). The addition of H2S resulted in nanotubes with split skins as cornhusks and/or frills. Electron energy loss spectra of the cornhusks indicated that they consist of sp2, sp3 and amorphous carbon phase. The spectra revealed that the sp3 to sp2 ratio at the points where cornhusks divide from the main stem was more than that at the edge of the cornhusks. No evidence of sulfur incorporation into the MWCNTs grown with the H2S addition was found. We speculate that the chemical nature of sulfur on the CNT growth yields such anomalous structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.