Abstract
Langmuir monolayers consisting of mixtures of 1-hexadecanol (HD) and 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP) (having quaternary amine headgroup) at different molar ratios were prepared to investigate the effect of the surface charge density on the structure of an electric double layer. The fatty alcohol molecules worked as passive spacers to widen the distance between the amine groups in the monolayer, to vary the surface charge density of the monolayer, and these mixture monolayer systems were probed by surface-sensitive sum-frequency vibrational spectroscopy. A strong sum-frequency signal in the OH range for a pure DPTAP monolayer (with a surface charge density of ∼0.4 C/m2) hardly decreased as the surface charge density was reduced up to ∼0.12 C/m2 (1 e per 140 Å2) and afterward decreased monotonically as more HD occupied the monolayer. The Gouy-Chapman theory incorporating a charged-condensed layer in which the counterion concentration is limited by a close packing of the counterions could account for the above saturation behavior in the sum-frequency spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.