Abstract
We consider the structure of divergences in Drell-Yan process with small transverse momentum. The factorization proof is not trivial because various kinds of divergences are intertwined in the collinear and soft parts at high orders. We prescribe a method to disentangle the divergences in the framework of the soft-collinear effective theory. The rapidity divergence is handled by introducing the $\delta$ regulator in the collinear Wilson lines. The collinear part, which consists of the transverse-momentum-dependent parton distribution function (TMDPDF), is free of the rapidity divergence after the soft zero-bin subtraction. There still remains the problem of mixing between the ultraviolet and infrared divergences, which forbids the renormalization group description. We show that the mixing is cancelled by the soft function. This suggests that the collinear and soft parts should be treated as a whole in constructing a consistent factorization theorem. The renormalization group behavior of the combined collinear and soft parts is presented explicitly at one loop. We also show that the integrated PDF can be obtained by integrating the TMDPDF over the transverse momentum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.