Abstract

The structure of crystalline and amorphous materials in the sodium (Na) super-ionic conductor system Na1+xAlxGe2-x(PO4)3 with x = 0, 0.4, and 0.8 was investigated by combining (i) neutron and x-ray powder diffraction and pair-distribution function analysis with (ii) 27Al and 31P magic angle spinning (MAS) and 31P/23Na double-resonance nuclear magnetic resonance (NMR) spectroscopy. A Rietveld analysis of the powder diffraction patterns shows that the x = 0 and x = 0.4 compositions crystallize into space group-type R3̄, whereas the x = 0.8 composition crystallizes into space group-type R3̄c. For the as-prepared glass, the pair-distribution functions and 27Al MAS NMR spectra show the formation of sub-octahedral Ge and Al centered units, which leads to the creation of non-bridging oxygen (NBO) atoms. The influence of these atoms on the ion mobility is discussed. When the as-prepared glass is relaxed by thermal annealing, there is an increase in the Ge and Al coordination numbers that leads to a decrease in the fraction of NBO atoms. A model is proposed for the x = 0 glass in which super-structural units containing octahedral Ge(6) and tetrahedral P(3) motifs are embedded in a matrix of tetrahedral Ge(4) units, where superscripts denote the number of bridging oxygen atoms. The super-structural units can grow in size by a reaction in which NBO atoms on the P(3) motifs are used to convert Ge(4) to Ge(6) units. The resultant P(4) motifs thereby provide the nucleation sites for crystal growth via a homogeneous nucleation mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.