Abstract

The structure of monolayers of cholesterol/ceramide mixtures was investigated using grazing incidence x-ray diffraction, immunofluorescence, and atomic force microscopy techniques. Grazing incidence x-ray diffraction measurements showed the existence of a crystalline mixed phase of the two components within a range of compositions of cholesterol/ceramide between 100:0 and 67:33. The mixed phase coexists with the ceramide crystalline phase in the range of compositions between 50:50 and 30:70; between 30:70 and 0:100 only the highly crystalline phase of ceramide was detected. The latter was determined and modeled. Immunolabeling was performed with an antibody specific to the cholesterol monohydrate crystalline arrangement. The antibody recognizes crystalline cholesterol monolayers, but does not interact with crystalline ceramide. Immunofluorescence and atomic force microscopy data show that in uncompressed ceramide monolayers, the highly crystalline phase coexists with a disordered loosely packed phase. In contrast, no disordered phase coexists with the new crystalline mixed phase. We conclude that the new mixed phase represents a stable homogeneous arrangement of cholesterol with ceramide. As ceramide incorporates the lipid backbone common to all sphingolipids, this arrangement may be relevant to the understanding of the molecular organization of lipid rafts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.